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Alguns coment4rios matemdticos sobre o Analytic Hierarchy Process: Parte II - Andlise prética

Resumo: O Analytic Hierarchy Process (AHP) é um método de apoio a decisdo tendo como uma das
maiores criticas o efeito de reversio de ranking. Uma nova andlise matemdtica deste método é realizada
em 22 aplicagdes. Duas formulacées do AHP mostram-se equivalentes em solucio e comportamento na
andlise de sensibilidade. A andlise de sensibilidade realizada inclui uma parte tipica usando o elemento
critico e duas novas andlises usando o vetor coluna critica e o nimero de condicionamento. Em alguns
casos, o AHP é mais sensivel a perturbacées no vetor coluna critico do que a perturbagdes no elemento
critico. O vetor coluna critico é tnico, independentemente da perturbagdo ser relativa ou absoluta. A
andlise de sensibilidade usando o niimero de condicionamento revela que a reversio de ranking sempre
existird para todo método linear. Transformacdes algébricas para matrizes com posto incompleto sdo
realizadas para obter um método mais estdvel e confidvel.

Palavras chave: Andlise multiple critérios, andlise de decisao, reversdo de ranking, sistemas lineares de
equagdes, andlise de sensibilidade, tomada de decisao.

Abstract: The Analytic Hierarchy Process (AHP) is a decision making method, which has as its greatest
criticism the rank reversal effect. A new mathematical analysis of this method is performed in 22
applications. Two formulations of the AHP show to be equivalent in solution and behavior in the
sensitivity analysis. The sensitivity analysis carried out includes a standard part using the critical
element, and two new analyzes using the critical column vector and condition number. In some cases,
AHP is more sensitive to perturbations in the critical column vector than to perturbations in the critical
element. The critical column vector is unique independently of whether the perturbation is relative or
absolute. The sensitivity analysis using the condition number reveals that the rank reversal will always
exist for every linear method. Algebraic transformations for deficient rank matrix are performed to
obtain a more stable and reliable method.

Key words: Multiple criteria analysis, decision analysis, rank reversal, linear systems of equations,
sensitivity analysis, decision making.
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Some mathematical comments about the AHP: Part II - Practical analysis

Introducéo

The Analytic Hierarchy Process (AHP) is a widely used decision making method. The
method consists of four steps: Modeling, Valuation, Prioritization and Synthesis. Since its
inception, the AHP has been the target of some criticism. The effect called rank reversal is one
of the criticisms associated with the results synthesis procedure, which is related to the
sensitivity analysis and greatly impacts the reliability and robustness of the method. For reasons
of space, the research was divided into two parts. In Part I (Alvarez et al 2021), the Synthesis of
the AHP is formulated in terms of a linear system of equations. In this way it is possible to
develop a theoretical basis for the new mathematical analysis of the method. This Part II is the
continuation of the research, in which the theoretical basis is applied to 22 practical cases of
AHP. The main objective of this work is to put into practice the theoretical development carried
out in Part I. That is, the classical formulation of the AHP will be confronted with equivalent
formulations. This comparison will be made with sensitivity analysis that allows delimiting the
region where the rank reversal effect occurs. Furthermore, through an example it is shown that
algebraic transformations to condense the deficient rank matrices add greater stability to the
solution of the AHP. Thus, the decision made with the help of the AHP becomes more reliable
and robust. Therefore, to save space here an introduction with bibliographic revision as usual is
not presented. The Introduction with the entire literature review on the topic presented in
Alvarez et al. (2021) is completely applicable in this part of the research, as Part II is a
continuation of Part L

The notation used will be the same as shown in Alvarez et al. (2021). That is, the notation
used will be bold capital letter for matrices (Ggyc) and vectors (Bgy;). To avoid
misunderstandings the dimensions are explicitly given in the sub-index. Bold lowercase letters
denote the matrix entries (g;;) and vector components (b;).

This Part II is organized as follows. Mathematical formulations and applications of the
AHP are presented in next Section. The following Section presents standard and a new
sensitivity analysis of the method. Posteriorly, algebraic transformations for deficient rank
matrix are introduced. Interesting comments about the rank reversal effect are presented in
next Section. Finally, the last Section contains some conclusions.

Mathematical formulations and applications of the AHP

The new mathematical analysis of the AHP is focused only on the Synthesis step (Alvarez
et al. 2021). This analysis can be applied to any decision-making methods based on matrices and
linear systems of equations whose synthesis can be formulated as equation (1). Suppose C
criteria with A alternatives, let B¢y, be the criteria priority vector, let Gy be the matrix whose
columns correspond to the priorities of the alternative with respect to each criterion, and let X x4
be the overall priorities for the alternatives. As presented in Alvarez et al (2021), there are two
formulations for AHP. First, the original formulation given by the equation (1). Second, the
equivalent formulation given by the equation (2). In Alvarez er al (2021) two appropriate
choices for C.., were described by equations (3) and (4), where the superscript [0]7 denote the
transpose of a vector or matrix, that is [Ggyc]” = Giyy.

XY = GaucBex. (1)

Cerxa X5 = CoraGaxcBexi = Dol (2)
ngA [GA XCGEXA]_ I if C>A and det(Ggy XCngA) #0

Cexa =14 [Gaxal™!, if C=A and det(Gpxa)#0 . (3)
[ngAGAxC]ingxA- it C<A and det(GgXAGAxc) #0
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C(‘x,\ :Gz'x.»\- (4)

Thus, to confront the formulations, the following solutions will be considered: ngf s

X5 XEQV2 and X573, X5 denotes the solution of the equivalent formulation for Cey, given
by the equation (3), and X./? corresponds to the solution of (2) for the choice (4). The
computational algorithms to calculate the solutions were implemented in the MATLAB®
software. For the solutions xjfff ! and Xfff ? the MATLAB®s backslash command was used,
which uses different numerical methods according to the matrix properties of the linear system.
The solution X5/ corresponds to the equivalent formulation for the choice (4) using the
MATLAB®s pinv(o) function. This function returns the pseudo-inverse of Ccy, using SVD
decomposition. Further details of MATLAB®’s functions can be found in Yang et al (2005) and
Moler (2008).

For case analysis, 22 applications of the AHP found in the literature were chosen
considering two restrictions. First, applications whose Synthesis process was carried out through
additive aggregation. Second, applications in which the columns of G and B¢, were formed
by normalized eigenvectors. From these applications, the matrix G, and the vector B, were
extracted as input data for the calculations.

Table 1 shows some peculiarities of the 22 applications of AHP analyzed. The first column
corresponds to the reference of the application case. In the second and third columns the
dimensions of Guy and K = rank (G,yc) are shown, respectively. Note that when K < min{C A}
the matrix is rank deficient, and one application check this condition (Koksal & Ozmutaf 2009).
The fourth column shows whether the system corresponding to the equivalent formulation is
square (sqr), overdetermined (ovt) or underdetermined (udt). In all overdetermined cases (C> A)
the system is consistent. This is, the vector D¢y, is a linear combination of the columns of Cgyy,
and as Cyy is full rank then the system has a unique solution. In all underdetermined cases (C'<
A) the linear system has infinite solutions, but the particular choices (3) and (4) for C;, make
the solution X5/ = X$RS. The fifth and sixth columns have the smallest angle between the row
or column vectors of Gy, where the index 7 and j represent the respective rows or columns
(Alvarez et al. 2021). Similarly, the seventh and eighth columns correspond to the smallest angle
between the row or column vectors of Ccy, for the choice given by the equation (3). If Ccxy =
G{y4 the angles coincide with those of G4y by exchanging rows for columns.

In addition, it should be mentioned that the solutions X5 may differ depending on the
numerical method used to solve the linear system. Mathematical and computational details on
numerical methods for the linear system can be found in Strang (1988), Demmel (1997), Lee
(2012), Gentle (2007), Quarteroni & Saleri (2007) and Golub & Van Loan (2013). However, in all
cases of application X5&; ' = X50/% = X59V3 _ X9RG,

An important aspect to highlight in Table 1 is about deficient rank as mentioned in
Alvarez et al. (2021). Angles equal to zero were highlighted in bold, indicating that there are
parallel rows or columns. In the case of Koksal & Ozmutaf (2009), the equivalent formulation
with the choice Cgyy = GL,,4 shows 4674" = 0. That is, the hyperplanes corresponding to rows 1
and 3 of Gf,, are parallel, and this is the cause of the deficient rank. In the cases of Cabata
(2010), Gomede & Barros (2012) and Franco et al. (2017), the zero angles do not cause deficient
rank because they are present in the largest dimension of Gy or Ccy4. In the case of Gomede &
Barros (2012), the zero angle is present six times in the largest dimension of Gy¢ or Ccyy. That is,
three columns of G, are equal (Z%,, = Z3,; = Z1,,), and also other four columns of G, are
equal (ngl = ZZXI = ngl = ZZXI)'

Another important aspect to highlight in Table 1 is about almost deficient rank as
mentioned in Alvarez et al. (2021). For example, angles less than 2° have been highlighted by
underlining. These small angles indicate that there are almost parallel rows or columns, which
can become parallel due to rounding/truncation errors in the calculations (Alvarez et al. 2021).
The cases of Gomede & Barros (2012) and Giri & Nejadhashemi (2014) are examples of almost
deficient rank. In the cases of Al-Harbi (2001), de Abreu et al. (2000), de Paula & Mello (2013)
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and Benitez er al (2019), these small angles cannot motivate almost deficient rank because they
are present in the largest dimension of Guyc or Ccy,. Other details can be found in de Almeida

(2019).

Table 1. AHP application cases.

Case | Gaxc | K | EF | @070, j | §67™i,j SO | 0T,
1 | Gsxz | 3| sqr| 19.1°23 | 18.8°13 60.6°,1,2 | 84.4°13
2 | Gsxs |5 |sqr| 30.7°1,3 | 26.4°3,4 14.8°45 | 47.8°2,3
3 [ Gsxs |5 |sqr| 64°35 1.4°,3.4 14.6°,1,3 8.4°15
4 | Gsxs | 5 |sqr| 17.8°,23 | 11.9°1,2 11.3°23 | 18.2°14
5 [ Gexs | 3 |udt| 1.4°3,4 3.5°1,3 57.2°2.3 1.1°,3,4
6 | Goxa | 4 |udt| 14.8°34 | 33.1°24 78.6°,14 | 29.7°2,6
7 | Gexs | 5 |udt| 20.2°,24 | 25.5°3,5 61.2°24 | 47.7°24
8 | Gexs | 4 |udt]| 155°34 | 0.0°1,3 13.5°1,5 8.7°,15
9 [ Gexs |5 |udt| 8.9°45 13.6°,2,5 50.6°,2,3 2.5°45
10 | Gyxs | 3 | udt| 6.2°47 | 29.6°,1,3 103.4°,1,2 | 16.1°,1,6
11 [ Grxe | 6 | udt [ 2.3°,6,7 4.5°1,3 30.3°,14 9.2° 2,3
12 [ Goxs | 2 | ovt | 73.7°,12 | 0.0°,3,5 0.0°,3,5 |106.3°1,2
13 | Gaxs | 3 | ovt | 50.1°23 | 0.5°,1,2 0.5°1,2 | 88.7°1,3
14 | Gaxs | 3 | ovt | 36.1°23 | 1.9°,2,4 9.0°,1,3 55.0°,1,3
15 | Gax7 | 3 | ovt | 41.7°,1,3 7.0°,2,6 15.1°2,6 | 108.2°,2,3
16 | Gsx7 | 3 | ovt | 54.8°12 | 0.0°3,5 0.0°.3,5 | 95.9°23
17 | Gaxs | 4 | ovt | 26.2°34 9.2°,1,2 13.9°14 | 42.6°,1,2
18 | Guxg | 4 | ovt | 25.1°2,3 4.1°,3,6 9.8°,5,6 50.5°,2,4
19 | Guxo | 4 | ovt | 1.4°2.4 | 0.0°,2,3,4 | 0.0°2,3.4 | 61.8°1,2
0.0°,6,7,8,9 | 0.0°,6,7,8,9
20 | Gsxg | 5 | ovt | 21.6°,25 | 10.5°45 1.2°,3,5 11.1°,24
21 | Gsxs | 5 | ovt | 36.7°,35 | 25.8°,34 47.6°34 | 84.3°25
22 | Gsxo | 5| ovt | 21.7°,45 8.6°48 9.9°5,7 61.4°23

Sensitivity analysis of the AHP

As presented in Alvarez et al (2021), changes or errors in By and/or G4y imply changes
in X9R¢ and X5%/. It is important to note that there are two types of errors in this analysis. First,
uncertainties in the construction of Buy; and/or Ggy,. Second, inaccuracies by the round-off
errors when performing calculations due to computer finite precision arithmetic. These changes
or errors can be estimated via sensitivity analysis. Here two sensitivity analyzes are presented.
First, the typical sensitivity analysis in the context of the AHP, where only one entry of Gy or
Bcx1 is perturbed, which are called critical element of Guyc and critical criterion of By,
respectively (Triantaphyllou & Sdnchez 1997; Pankratova & Nedashkovskaya 2016). Second, a
new sensitivity analysis in the context of the AHP, where one column vectors of Guyc is
perturbed, which will be called critical column vector (Alvarez et al. 2021).

Typical sensitivity analysis of the AHP

This sensitivity analysis is based on the ideas presented in Triantaphyllou & Sdnchez
(1997), where the minimum relative/absolute perturbations are determined in a single element
of Beyy O Gyyc that cause any change in ranking of X3%¢ and X, . However, to determine the

minimum relative/absolute perturbations and the most sensitive elements, a computational code
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in MATLAB® was developed following the Algorithm 1. This algorithm is based on the idea of
seeking the minimum perturbation, scanning element by element, but considering a range of
viable perturbations and an update in the data. The validation of this code was performed with
Pankratova & Nedashkovskaya (2016), which in essence is a generalization of the methodology
proposed in Triantaphyllou & Sianchez (1997). In addition, the results of this standard sensitivity
analysis are in agreement with the results of the SuperDecisions software.

Considering the Definition 1 in Alvarez et al (2021) the following notation will be used.
The minimum relative and absolute perturbations in Gy are Ag{}t and Ag?}’s , respectively. The
critical element obtained via Ag{}t is gf}t, and the critical element obtained via Ag?jbs is g‘iljbs . The
smallest and largest magnitude entries for Gy are gg‘i“ and g;}®, respectively. Similarly, the
minimum relative and absolute perturbations in By, are Ab]”t and Abj‘-‘bs, respectively. The
critical element obtained via Ab7" is b/**, and the critical element obtained via Abf"® is b**. The
smallest and largest magnitude entries for B¢y, are b}“i“ and b;"®*, respectively. Considering & =
10°° in the Algorithm 1 the minimum perturbations and the critical elements for each case of

application of the AHP were determined. The results are shown in Figures 1 and 2.

Algorithm 1 Minimum Absolute Perturbation and Critical Element

Input: Gaxc, Bexi, an increment in perturbation 8 by iteration, a lower and upper limit
of the perturbation interval (Ag;; and Ag;'} .

Qutput: Minimum absclute perturbation Agf,f;f , critical element gﬁ’,f,’f .

X9RG = GaxcBex1 (OrdRnkXQRE).

1: Determine the Ordinal Ranking for
2 fori+1toAdo
3: for j« 1toCdo

4: Ag,-j — gi;
5: Haxc + Gaxc
6: while Ag;; < Ag;; do
T Ag,-j<—Ag,-j—|—8
A
8: l‘lij — u
1+ Ag,-j
9: Determine OrdRnkX 4«1 for Xax1 = HaxeBexi.
10: if OrdRnkXsx1 7 OrdRnkX$R$ then
11: if | Ag;; |<| AgZs | then
12: m«—i
13: n<j
14: Agﬁf;f (—Ag,-j
07 I I I I I I I I I I I
7 b
0.6% A b |
X b
205 b2 |
™
= 04 1
< 03 v x 7
7 v v
= X S
= 02 ]
% i3
mA\A/é\\A/\&/é\&/A\LA ) )
\A“A—LJ a__r——éi
0 1 1 | 1 | 1 1 1 | 1 | 1 | 1 | 1 | | 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Cases

Figure 1. Positional analysis of the critical element of B¢y, .
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Critical element of G 4.¢

01 L N .
M
/}—A/t
0 T = ] 1 ] ] I ] 1 I | ] ] ]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Cases
Figure 2. Positional analysis of the critical element of G4x.

In Figure 1, for the critical element in B, it can be noted that, among the 22
applications, in 13 applications b’" = b*®*, and in 6 applications b{”* = b/*". These results are
in accordance with conclusions found in Triantaphyllou & Sdnchez (1997). Moreover, in 9
applications b} = bf"*, and in 13 applications b} # b?**. In Figure 2, for the critical element in

Gyxc there are no applications with gj;* = gJ}**, in 3 applications gf’* = gJ/'",in 5 applications

gi;* =g, and in 17 applications gj;* # g’

Figure 3 shows the relative values of the minimum perturbations for each application.
Figure 4 shows the absolute values of the minimum perturbations for each application. The
dashed line y = 0 indicates minimum perturbation equal to zero. Therefore, the closer to this line
the minimum perturbation is, the more sensitive to the rank reversal is the application. In
general, considering the relative and absolute perturbations, the applications (Oliveira 2013; Su
et al. 2014; Benitez et al. 2019) are less sensitive to the rank reversal. In the applications
(Trevizano & Freitas 2005; Giri & Nejadhashemi 2014; Mendes et al. 2014; Alves & Alves 2015) it

is possible to notice the following intriguing behavior. If in relative terms AbJ" = Agj;* or very

close, then in absolute terms Abf”* = Ag#"® and the perturbations change signals. That is, if Ab*

=~ Ag};* S 0, then Ab?”* =~ Ag?’* = 0. The opposite sentence is not true.

700 T T T T T T T T T T T T T T T T T T T T

X X X Ab"

- It |-
: 600 Agh
E X
o 500 .
=
=
S 400 .
=i
= 300 .
S 200 | .
I
2 100 [ X .
=
% 0 b ol oS );\ﬂ ............................ b A x x ................................................................................................... .:<
é ~ % 5(” ™ X b4 N X )(
=

_100> ] X ] ] >|< ] ] | 1 T 5% >|< 1 ] | ] ] 1
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Cases

Figure 3. Relative minimal perturbations in the critical elements of By, and Gyc.
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Figure 4. Absolute minimal perturbations in the critical elements of Bry; and Gyc.

To numerically exemplify the great sensitivity in some AHP applications, consider the
case of de Paula & Mello (2013), which corresponds to the point (case 5, —0.3320) of the relative
minimum perturbations in Figure 3. In this case, a reduction of approximately 0.3320% in g, is
sufficient to invert the priorities in the alternatives. Note that alternatives 3 and 4 of the original
solution X9F%= [A;AsA,A;A,A]" are switched to the perturbed solution XAiTF=
[AgAs A; A, A, A 1" This hypersensitivity shows that small variations in the main eigenvector
of the local judgment matrix cause rank reversal when the variations occur in the critical
element.

Finally, it is possible to conclude that there is no rule or law that indicates the critical
element depending on the type of perturbation used. However, the empirical conclusions
present in Triantaphyllou & Sanchez (1997) can be considered as a trend, although they are not
always verified. In addition, the critical element obtained with the relative perturbation may be
different from the critical element obtained with the absolute perturbation.

New sensitivity analysis of the AHP

In essence, most of the sensitivity analyzes of the AHP are similar to those performed in
the subsection above. For this reason it was called the typical sensitivity analysis of the AHP. It
consists in finding the critical element, in relative or absolute terms, and estimating the smallest
perturbation that causes the rank reversal (Triantaphyllou & Sdnchez 1997). However, this type
of analysis does not estimate the sensitivity of the method with respect to vectors of priorities of
the alternative with respect to each criterion or eigenvectors. That is, although it is possible to
identify the most sensitive element (critical alternative or criterion), it is not possible to identify
the most sensitive or critical eigenvector, even if this originates from judgments considered
consistent. In Alvarez er al (2021) it was suggested that estimating the sensitivity of the
formulation with respect to the critical eigenvector may be as important as estimating the
sensitivity with respect to the critical element.

Considering the Definition 1 in Alvarez et al (2021) the following notation will be used.

The column vector of Gy obtained after minimum relative perturbation in the critical element

.. . jrit e 4.
ng]@t and normalization is Zj,;l , where j indicates the column of Ggyc. The column vector of Gy

obtained after minimal absolute perturbation in the critical element g&’* and normalization is

Z)2P°. The critical column vector of Gy is denoted by Z)<1". This vector can be understood to

the column vector ijl that causes any change in ranking of X927 with the smallest possible

IAZ),, 12/IZ] ., l12, and it is determined by equation (5)
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; / 1, ptt |
Izl u ~ min { P~ Eale (5)
Iz Uzl f il 12l

vz vz,

Axl ‘Ax1

where Zjl‘ztlb denotes the perturbed column vector. It must be said that in all cases of application
of the AHP the critical column vector found with relative perturbation coincides with the one
found with absolute perturbation. Deterministic, heuristic or stochastic methods can be used to
determine the column vector, which when perturbed entirely minimizes the error
IAZL 1 I12/IIZ,; 12 for all I. Here, a stochastic method was used, where AZQ';‘im denotes the
random column vector, which is obtained by randomly perturbing all the components of Z},;.

The Algorithm 2 shows the idea of this stochastic method. The idea is to randomly
generate a sample of Q@ vectors that are uniformly distributed in a region close to the
unperturbed vector Z},;. All of these vectors Z;‘itlb have the same dimension and are
normalized. The generation of these random vectors is stopped when 10 x @ vectors that cause
rank reversals with an error greater than Error,,;, are counted. This is the stopping criterion for
the loop.

Algorithm 2 Minimum Random Column Eigenvector
Input: Gaxc, Bexi1, a number Q of column vectors generated randomly.
Output: Random column vector Zixl with the smallest Errory,.

1: Determine the Ordinal Ranking for gﬁ? = GaxcBcx1 (OrdRnkX! gﬁ‘f .
2: while Logmer < 10x @ do _
3: Generate a random matrix Raxg with i-th column vector ZXI:I

for j«1toCdo

4
5 Haxc + Gaxc with j-th column vector Zf;fl

6 for i<— 1 to 0 do

T: Z£X1 Z"Xl, where Z/H x1 i8 the j-th column vector of Haxc.
8 Determine OrdRnkX, ;1 for X451 = HaxeBexa-

9 if OrdRnkXx1 # OrankXXf‘f then

10: Leounter Lcounter + 1
11: Error « “ Axl = Ax1”2
12551 ll2
12: if Error < Errorp, then
13: E rrormm «— E rror
14: Z A —Z% Axl
15: Lcounter +0
The critical column vector will be the one with the smallest relative error between Zﬁ’illt,
Z)2° and Z4513™. For example, consider the case present in Cabata (2010), which originally has
the column vector Z$,;. When a minimum relative perturbation of —19.7355% is made in gy,
the perturbed vector after normalization becomes Z$]+', and the less priority alternative that was
previously A, becomes A;. When an absolute minimum perturbation of 0.0535 is made in gabs,
the perturbed vector after normalization becomes Z$%’°, and a similar inversion of the

alternatives occurs. This same rank reversal also occurs when Z$,; becomes Z57¢™, where Z57¢™

is obtained from Z$,; with the Algorithm 2 by randomly perturbing all its components.
However, as Z5,2™ has the smallest [[AZS,, [12/IIZS,,l2 among the three mentioned perturbations,
then this vector will be considered the critical column vector of G,yc. The details of this example

are described in Table 2.
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Table 2. Perturbations in the column vectors of the case (Cabata 2010).

Alternative | Z3,, AN 7557 7
A, 0.3767 | 0.3266 0.3576 0.3456
A, 0.1513 | 0.1634 0.1944 | 0.1825
As 0.4720 | 0.5099 0.4480 0.4729

1AZS, { [l2
x 10.2 494 7.
iz, 0% |10.2735 % | 8.4943 % | 7.0689 %

Figure 5 shows the data in Table 3, where all 22 analyzed applications are compared. In
several cases it is possible to notice that the relative errors of the randomly generated vectors are
below the relative errors generated by minimal relative or absolute perturbations. That is, in
several cases the AHP is more sensitive to perturbations in the eigenvector as a whole than to
perturbations in the critical element of Ggy.. In addition, observing the Table 3, it is possible to

notice two peculiarities about the j position of the critical column vector Z)\". First, it can be

jrit
1Az} 2

7

noted that the column that generates the lowest ;
ax1 112

may differ from the column with the

k,ab.
IAZ5 1 Iz

lowest —*—, that is, j # k (Al-Harbi 2001; Lucena & Mori 2018; Benitez et al. 2019). This result

ANRD

was expected by the sensitivity analysis carried out in the previous section. Second, the j position

k,abs
1AZ; 575112

1Z551 12
in the cases (de Paula & Mello 2013; Giri & Nejadhashemi 2014; Damdinsuren & Ishdamba
2017) the column where the critical element is located does not match the column j of Z)<".

This indicates that the critical element does not necessarily belong to the critical column vector.

jert

associated with Zj, ;" tends to match the column that generates the smallest . However,

k,abs Jrle Jrle k,abs
IIAZ 1" 112 1AZ; 1 1I2 . . 1AZ ), 4112 IAZ ;o1 112
In most cases —**— < —"*— however in the case (Oliveira 2013) —*— < —1—
”ZA><1”2 ”ZA><1”2 ||ZAX1||2 ”ZA><1”2
Lrdm k,abs k,abs Lrdm
i . IAZ ;o N2 NAZ 51 112 . IAZ 72 IAZ gy q 12 s e .
addition, in some cases —=— < —&1— and in other cases —=— < —&1— This indicates
I1Z 451112 1Z 451112 I1Z451 112 I1Z 451112

that to find the critical column vector it is not sufficient to make the perturbation only in the
critical element, but also in all the components of the column vector.

07 T T T T T T T T T T T T T T T T T T T T
o O Zify
5,108 | _|
06 \V4 Zfb}l
[ Tt
ZAxl
05 ®) -
o v
=04 —
EE v
SN sl . 0 ]
O
0.2b v .
i
Vv
01 F v _ e e 9 -
o v‘/ ‘I;‘J \d v M
- — R =
0 1 @ | \‘? “r" A7 ] 1 ‘Y, W ] ] 1 1 I 1 1 T1 I 1 o
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Cases

Figure 5. Minimum perturbations in column vectors of Ggyc: relative and absolute perturbations in the

.. j rit j,ab . . jrd
critical element (Zi;l and ngls), and perturbations in the random column vector (Zi;lm).
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Table 3. Perturbations in Gy to find the critical column vector.

. 1Az o IAZLZ s IAZ,

Caseg Reference 7, rit] izl bc,ab., T [, rdn TN
1 Su et al. (2014) 1102081 1 [(0.1732] 1 |0.1217
2 Trevizano & Freitas (2005) 1 {0.0613| 1 |0.0408( 1 |0.0370
3 Giri & Nejadhashemi (2014) 5100292 5 [0.0225| 1 |0.0191
4 | dos Anjos Bainha et al. (2018) | 3 [0.2630| 3 |0.0645| 3 |0.0425
5 de Paula & Mello (2013) 1100008 1 [0.0008| 3 |0.0185
6 Sbeity er al. (2014) 3 10,026 3 |0.0226| 3 |0.0271
7 Alves & Alves (2015) 2 (0.0122| 2 (0.0110| 2 |0.0122
8 Koksal & Ozmutaf (2009) 2 10.4855| 2 |0.1390| 2 |0.0756
9 Lucena & Mori (2018) 102777 3 |0.1270| 3 | 0.0858
10 Schmidt (1995) 1 10.0347| 1 [0.0338| 1 |0.0406
11 Wollmann et al. (2012) 5 |0.0188| &5 |0.0189| 5 | 0.0456
12 Franco ef al. (2017) 1 [0.0708] 1 |0.0708| 1 |0.0708
13 de Abreu et al. (2000) 1 (06187 1 |0.6187( 1 |0.4168
14 Benitez er al. (2019) 4 104279 1 |0.2266| 1 |0.1488
15 Oliveira (2013) 1 (03163 1 |0.3728 | 1 |0.2584
16 Cabala (2010) 6 [0.1027| 6 |0.0849( 6 | 0.0707
17 | Chalipkova & Franek (2014) 1 [0.0886| 1 |0.0825| 1 |0.0654
18 Shahroodi et al. (2012) 1 (0.4466| 1 |0.4466( 1 |0.2938
19 Gomede & Barros (2012) 4 10.0012| 4 |0.0012| 4 |0.0013
20 Al-Harbi (2001) 2 (01050 1 |0.0931( 1 |0.0699
21 [Damdinsuren & Ishdamba (2017) 2 [0.1199| 2 [0.1009| 1 [0.0915
22 Mendes et al. (2014) 9 10.0226| 9 |0.0201( 9 |[0.0194

Sensitivity analysis via condition number

As presented in Alvarez et al. (2021) the condition number allows estimating a measure of
the sensitivity of a linear method. Thus, the higher the condition number of the matrix, the
more sensitive this formulation will be to perturbations in its input data. This type of sensitivity
analysis allows us to estimate how uncertainties and/or inaccuracies impact the solution of the
linear formulation. Within the scope of AHP, this analysis can be applied to its two formulations:
original and equivalent.

The theoretical developments carried out in Alvarez et al (2021) will be shown here in
graphical form. The central idea is to plot graphs, whose x axis represents the relative error of

. IAG g clim IAB 1 llm . . . .
the input data . ~—, and the y axis represents the relative error in the solution
IGaxclim IIBcy1 llm
E
1axG8Gm 18Xl im

T L Two ways of generating these relative errors are considered: (I) variations on
Ax11Mm Ax11im

the critical element of G (g?jbs ) or Biyq (bJ‘-”’S ) with absolute perturbations increased in § = 107,
(II) variations on the entire critical column vector with random perturbations.
In all plotted graphs, there will be two vertical lines determined by the critical element of

Gyyc or Boy, called Rank Reversals (1) and Bound of infeasible. The vertical line Rank Reversals
IAGaxcll2 IABcx1112
G axcli2 IBcxa 12
when only the critical element is perturbed in the column vector. Meanwhile, the vertical line

Bound of infeasible corresponds to the limit value of viable perturbations of the critical element.
In the context of the AHP, a perturbation is considered viable if the vectors that are generated
can be normalized with componentes in the range [0,1[ and not very small values (g;; or b; >

value from which the rank reversal occurs

(1) corresponds to the smallest |
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0.001). Thus, each graph is divided into three regions. First, the region before the vertical line
Rank Reversals (1), where perturbations in critical element do not yet generate rank reversal.
Second, the region between the vertical lines Rank Reversals (1) and Bound of infeasible, where
rank reversal exists. Third, the region after the vertical line Bound of infeasible, where rank
reversal occurs with perturbed vectors that are not viable for AHP. The third vertical line is

called Rank Reversals (2), and it is determined by the critical column vector. This line
1AGaxcl2  IIABcxsll2

IG axcll2 IBcxall2
all components of the critical column vector are perturbed.

Following the development described in Alvarez et al. (2021), the theoretical limit of the
relative error of the solution defined by the equations (6) and (7) is plotted in each case. Five
matrix norms || © [l,, were used to determine the relative error, which are presented in Table 4
for an arbitrary matrix Ccxs (Strang 1988; Demmel 1997; Gentle 2007; Quarteroni & Saleri 2007;
Lee 2012; Golub & Van Loan 2013). For reasons of space, it is not possible to present this analysis
for the 22 applications of AHP. Thus, three applications were selected, where each one has Gy
full rank with dimension C> A (de Abreu et al. 2000) or C= A (Trevizano & Freitas 2005) or C<
A (Sbeity et al. 2014). Two figures are presented for each application. The first figure (Figures 6,
8 and 10) corresponds to the sensitivity analysis according to the relative error of Bcy;. In these
cases the vertical line Rank Reversals (2) corresponds to the perturbed vector B, as a whole.
The second figure (Figures 7, 9 and 11) corresponds to the sensitivity analysis according to the
relative error of Guyc. All figures show the relative error of the solution for the original and
equivalent formulations, and in the equivalent formulation the two appropriate choices for Ceyp
are considered. The Algorithm 3 presents the computational idea to build the graphs.

value from which the rank reversal occurs when

corresponds to the smallest

AB ,

|| Thr. errorl|, = Cond,,,(GAxc)M. (6)
HBCX 1 Hm
AG

| Thr. errorl|,, = cond,,,(GAxc)m. (7)
HGAXCHIH

Algorithm 3 Graphs of the Sensitivity Analysis for Relative Error in Gax¢
Input: Gaxc, Bex1, gfjb‘s, i s, Zi’f(?, Zi’ﬁs, Z}{’;d]m, an increment §.
Qutput: Graphs of the sensitivity analysis perturbing Gaxc.

1: The vertical line Rank Reversals (1) corresponds to the points {x,y) with x =

jabs _epjcrt
2y —Zxsill2 AGaxcl2 :
= and y arbitrary.
Gaxcllz Gaxcll2 Y ¥

2: The vertical line Rank Reversals (2) corresponds to the points (x,y) with x =

z.i.rdmiz.i.cn A .
_ﬂ_ﬂ_" Ax&AxCA;l”z = ﬂ”—ﬂu-(g“:cczz and y arbitrary.

3: A]‘lij +«0
4: Haxc + Gaxc;
5: while all elements of Haxc > 0.001 do
6: Ah;j < Ah;; 4+ &
7. hy+ Bi/" +Ah
z ij 1+ Ah;;
8 Compute [AGaxc|lm _ [Haxc—Gaxcllm
) AxC|lm AxC|lm ’ oVt Fov?
o Compute 19557la _ IXFAXC)y |82 )y | ) IAXEEEs
"xmzl"2 "x.lxl ll2 ! ”x,\xl [I2 ”x.ul 73

10: Compute cond,(Gaxc) = ||GAxch||G:7xAHm.

11:  Compute || Thr. error||, = C'O"dm(GAxC)uﬂAGGA—'tfHI,Jf-
12: if Iofaxcl
AxC|I2

13: Errorp,, + ”,'ISGGA#':CC‘EQ, maximum perturbation of the AHP.

14: The curves X9R¢, X521 and X522 correspond to the points (x,y) with x = ”fgn—m”f

> Errotpg, then

IAX2EG ]l AXZE o o AL .
and y = T_gg—, gy, and “—Eg— respectively.
XNz 1% e X1 ll2
. . Al
15: The curves || Thr. error||, correspond to the points (x,y) with x= J{]—gﬁpﬂ and y=
x L]

[[Thr. error||m,.
16: The vertical line Bound of infeasible corresponds to the points (x,y) with x = Errorp.,
and y arbitrary.
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Table 4. Five matrix norms used in the sensitivity analysis.

1.5

“AXAXl Hm
[ X a1 [lm

m— Name

Norm Formulation

2 — FEuclidean

A
ICcxallz= X
=1

): le;;|?

1 — Maximum absclute column sum

ICoxall = ma.

A
L el

oo — Maximum absolute row sum

[Cexalle = max {z |cu|}

1<j<A

F —Frobenius

||CC><A||F= E E |cz_]

i=1 ]_

|2

max —Maximum element

|Cexallmax = 1@52‘0 { |
1<j<A

5

Rank Reversals (2)
Rank Reversals (1)

g || Thr.
...... || Thr.
------ +-- || Thr.

. error||s
. error|q

error || oo

error| g

eITOT || mmax

i~ Bound of infeasible

[ABexi[[m
[Bextln

Figure 6. Sensitivity analysis perturbing By, in case (Trevizano & Freitas 2005) (C= A).

. errorl;

. error||;

. error||a
. error||F
" error | pax

Bound cf infeasible

HAP AxC Hm
|G axclm

Figure 7. Sensitivity analysis perturbing Gy in case (Trevizano & Freitas 2005) (C= A).
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Figure 8. Sensitivity analysis perturbing By, in case (Sbeity er al. 2014) (C< A).
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Figure 9. Sensitivity analysis perturbing G,y in case (Sbeity et al 2014) (C< A).
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Figure 10. Sensitivity analysis perturbing B¢y, in case (de Abreu et al 2000) (C > A).
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Figure 11. Sensitivity analysis perturbing G4y in case (de Abreu et al. 2000) (C > A).

In all applications the curves X$R¢, X597! and X527 are straight lines. In addition, in all
figures it is not possible to notice a difference between the sensitivity of the original formulation
and the equivalent for the two choices of C¢ys. That is, the curves X$8¢, X52" and X527? always
overlap. Therefore, the two formulations of AHP show similar sensitivity. This result justifies the
new mathematical analysis of the AHP performed in Alvarez et al (2021), and reinforces the
equivalence between the formulations. If there was no overlap of the curves, the curve with the
greatest relative error would represent the formulation with the greatest sensitivity, and
consequently with the greatest chance of rank reversal.

In Figure 8 the vertical lines Rank Reversals (1) and Rank Reversals (2) show overlap.
However, in Figures 6, 7, 9, 10 and 11 the vertical lines Rank Reversals (1) and Rank Reversals
(2) do not match. This means that there is a difference between the sensitivity analysis
considering only the critical element and the sensitivity analysis considering the critical column
vector. Moreover, if the vertical line Rank Reversals (2) is positioned to the left of the vertical
line Rank Reversals (1), then the formulation is more sensitive to the critical column vector than
to the critical element. That is, the perturbation in the critical column vector that causes the
rank reversal is less than the perturbation needed in the critical element for the rank reversal to
arise. In other words, the typical or standard sensitivity analysis of the AHP is unable to reveal
the rank reversal in a region where the sensitivity analysis via the critical column vector reveals.
Furthermore, when considering the perturbation only in B¢y, for the three cases Rank Reversals
(2)<Rank Reversals (1). However, the same cannot be said for the perturbation only in Ggyc,
since in Figure 9 Rank Reversals (1)<Rank Reversals (2). Therefore, this indicates that in order to
have a more complete sensitivity analysis on the rank reversal effect it is necessary to carry out
both analyzes: typical and the new one via the critical column vector.

In all cases, the curves X$R¢, X597! and X524% were limited superiorly by the theoretical
error in the five norms used. The theoretical errors closest to the curves X98¢, X5¢7" and X524?
were calculated using the norm || © |l ,¢. Theoretical errors calculated with the other four norms
greatly overestimated the relative errors of the solutions X355, X5 and X52Y2, The slope of
each theoretical error curve is the condition number cond,,(Ggc), which is greater than the
slope of the curves X9%¢, X;2'" and X,2'°. This shows the importance of choosing the
appropriate norm to carry out a theoretical sensitivity analysis closer to the actual application
cases.
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Algebraic transformations when Gy, is deficient rank

Among all the analyzed cases, only one application presented Ggy. with deficient rank
(Koksal & Ozmutaf 2009). In this case (Koksal & Ozmutaf 2009) C < A and K = 4, where the
column vectors Zi,, and ZZ,, are parallel. Following the transformations described in Alvarez et
al. (2021) it is possible to obtain a condensed formulation (8) with the same original solution.
The condensed matrix Gy, is full rank. The matrix Gg,, is condensed because its dimension is
smaller than the dimension of Ggys. Note that the LD column vectors of Ggys have not been
removed from the analysis. These vectors were factored, and their weights were redistributed in
b, = (b; +b;). Note also that in this application case the two LD column vectors of G5 are not
ordered.

[0.039 0.055 0.039 0.067 0.135] 0.048
0.063 0.074 0.063 0.370 0.444 '

0.483
XORG _ G Be., — |0-115 0.089 0.115 0.151 0.064| | ") 7

6x1 0.245 0.171 0.245 0.190 0.048 0.106
0.316 0.263 0.316 0.093 0.029 0'066
_0.221 0.348 0.221 0.129 ().28()_ '
=b1Zi, + D222, +b3Z2, | +bsZE,  +DbsZ2,,
=byZ2, , + (by +b3)Z3, | +bsZE, , +bsZ2,,
N, e’
factoring
[0.055 0.039 0.067 0.135]
0.074 0.063 0.370 0.444| [0.483
0.089 0.115 0.151 0.064| [0.345 = & :
= :('(1-'JB4-‘|- (8)

0.171 0.245 0.190 0.048| [0.106
0.263 0.316 0.093 0.029| [0.066
10.348 0.221 0.129 0.280|

Two benefits of this algebraic transformations can be highlighted. First, choose
appropriate for C;.,, since the equations (3) and (4) are not the most appropriate. For example, a
choice is given by the equation (9), which is similar to the equation (3) replacing G,y with Gk

G};XA[GAX[(G[EXA}fl, if K>A and dé’T(GAxKG};XA) #0
[ AxK}fl, if K=A and d(’[(GAxK)g/—‘O . (9)
(GE L Gaxk]T'GL . if K<A and det(G), ,Gaxg)#0

Another choice would be given by the equation (10)
Cxin =Gk 4 (10)

Since G4y is full rank it is not necessary to use special computational routines in MATLAB® to
solve CKxAxig;/ = CixaGaxcBexi = CixaGaxk Bixi- _

The second benefit is the better condition number of the G,k when compared to Ggyxc.
Table 5 shows the comparison between the formulations (1) and (8) for this case of deficient
rank (Koksal & Ozmutaf 2009). As can be seen, the condensed matrix has a much lower
condition number. It is well known that a lower condition number ensures greater stability and
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robustness to the original and equivalent formulations. This is also verified in the highest value

jert
: cxa 112 1AGaxcl2
of the perturbation jc);t” - AXCHZ needed to generate the rank reversals.
Y 2 AXC
cx1

Tabela 5. Comparison between the original and condensed formulations in the case (Koksal & Ozmutaf

2009).
. Azl AG4
Model Matrix | K—rank | conds(o) ””_Z'é%{% ﬂ”ﬁ”‘i&
Qriginal Ggxs | d4-deficient | 1.96E4+16 | 7.73 % | 4.26 %
Condensed | Ggxa 4-full 26.36 1012 % | 496 %

The rank reversal effect on the AHP

The rank reversals effect is common in AHP applications (Maleki & Zahir 2013; Aires &
Ferreira 2018). This effect was detected in (Belton & Gear 1983). Subsequently, several studies
and debates have appeared trying to explain and avoid this effect. However, even today the
debate remains open without definitive answers. In Part I of this research (Alvarez et al 2021) a
new mathematical analysis of the AHP is proposed. In this new analysis the AHP is formulated
in terms of a linear system of algebraic equations. In this way, it is natural to perform the AHP
sensitivity analysis via condition number. Consequently, the sensitivity analysis via condition
number of any linear system leads to Remark 1 in (Alvarez er al 2021). This remark states that
the rank reversal is impossible to eliminate in AHP, and the results presented in the section
above support this statement. As seen in all the figures in the section above, the rank reversal
effect corresponds to a region delimited inferiorly by the vertical line Rank Reversals (1) or
Rank Reversals (2) and superiorly by the vertical line Bound of infeasible. Since it is impossible
for the lower and upper limits of this region to be the same, then in every application of AHP
the rank reversal effect will always be present. To reduce or mitigate this effect, it is necessary
that the vertical lines Rank Reversals (1) or Rank Reversals (2) are as far away as possible from
the origin in these figures. This will make more stable and reliable the AHP.

Three causes attributable to the construction of G,y and By, can negatively impact the
rank reversal. First, inclusion or removal of criteria and/or alternatives. Second, uncertainties or
inaccuracies in Gy, and/or B;y; combined with “ill-conditioned” G,y.. Third, deficient or almost
deficient rank of G4yc. These three causes are linked to two properties of Gyc: rank deficient and
“ill-conditioned” matrix, which in turn is related to the problem being mathematically “well-
posed” and “well-conditioned” (Alvarez et al. 2021).

In the first cause the dimension of G,y is changed, and consequently its properties of
rank and condition number. Geometrically, if an alternative is included/removed, the vector
subspace S € R* will have its dimension changed to greater or lesser, and if a criterion is
included/removed the number of hyperplanes will be changed to greater or lesser (Alvarez et al.
2021). Therefore, in both cases of inclusion/removal, the point common to all hyperplanes
(solution) will be changed.

In the second cause the dimension of Ggyc is not changed. However, if Ggycis “ill-
conditioned”, small changes in Gy and/or B, due to uncertainties or inaccuracies generate
large changes in the solution. Among these large changes in the solution is included the rank
reversal.

In the third cause, there can be infinite solutions in the equivalent formulation of AHP.
Consequently, the solution of the original formulation can change between the infinites of the
equivalent formulation, motivated by small perturbations in Guyc and/or Bcy;. These infinite
solutions include those with a rank reversal.
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Conclusions

In this work the theoretical developments carried out in (Alvarez et al. 2021) are verified
in 22 applications of AHP. The results show that the last step of the method, Synthesis, can be

reformulated in terms of a linear system of equations. In all application cases the solution b v

= X592 _ x59¥3 _ X9R¢ Moreover, the two formulations of the AHP show similar behavior in the
sensitivity analysis performed.

A sensitivity analysis was carried out, considered standard in the context of the AHP,
where the critical elements of Gy and B¢y, are determined by perturbations in relative and
absolute terms. It was found that there is no simple relationship between the critical element
and the perturbation used, although a tendency for the critical criterion to be the criterion of
greater or lesser weight can be noticed depending on whether the perturbation is relative or
absolute.

A sensitivity analysis different from the standard was performed, where the critical
column vector of Gy is determined. A stochastic method was developed to randomly perturb
all components of the column vectors. It was found that the column of the critical element does
not necessarily coincide with the column of the critical column vector. Moreover, in some
applications considering the same amount of perturbation measured by the matrix norm, the
rank reversal occurs first with the perturbation of the critical column vector than with the
perturbation of the critical element. This also occurs when all components of the vector B¢y, are
randomly perturbed. Therefore, in these cases, AHP is more sensitive to perturbations in the
critical column vector than to perturbations in the critical element. Furthermore, the critical
column vector is unique independently of whether the perturbation is relative or absolute.

A new sensitivity analysis was performed via condition number of G, where

. . . . IAG gy llm
perturbations are made in the input data G,y or B¢y, to calculate the relative error —AC

lAB gy 1 lim

I1Gaxclm

PE—— Subsequently, the curves that determine the impact of these perturbations on the
Cx1lim

relative error of the solution for the two formulations are plotted. It was found that the curves of
the two formulations are similar straight lines. Moreover, the rank reversal effect corresponds to
a region bounded inferiorly by the vertical line Rank Reversals (1) or Rank Reversals (2) and
superiorly by the vertical line Bound of infeasible. This region will always exist for any linear
system of equations. Therefore, in all AHP applications of the type determined by equation (1),
the rank reversal effect will always be present.

An example of application of AHP showed how the algebraic transformations described in
(Alvarez et al. 2021) allow to make a rank deficient matrix in full rank, and in this way the
condensed formulation presents greater stability and reliability. Finally, it must be said that the
mathematical developments carried out here can be applied to other decision-making methods
based on matrices and linear systems of equations. In addition, in future work it is necessary to
go even deeper into the theoretical analysis initiated in (Alvarez et al. 2021).
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